

Nutritional Strategies to Minimize Nutrient Excretion in Dairy Cows

降低奶牛粪污中养分排泄的营养策略

Wendy Powers Professor 教授 Michigan State University 密歇根州立大学

Feed is the most expensive cost on the farm 饲料是牧场最贵的成本

- Feed costs comprise ≥25% of production cost 饲料成本占生产成本的25%以上
- Makes sense to minimize waste
- 把浪费降至最低是有意义的
 - Avoid overfeeding costly nutrients 避免过量的营养
 - Minimize refused feed 剩料最小化
 - Both without compromising performance
 - 两种方式都不影响性能
 - Optimal performance 最优的性能

Grouping animals 奶牛分群

- If feeding all animals in one group, tend to feed the animal with the greatest nutrient needs
- 如果以一个群来饲喂所有的奶牛,往往会以最大的营养需求来饲喂奶牛
 - Therefore, overfeed nutrients to most of the group
 - 因此,大部分群的营养都过多
 - Costly to waste those nutrients when not needed by the animal
 - 当这些奶牛不需要这些营养时,这些营养都被浪费了

Grouping strategies 分群策略

- By parity 按胎次
 - Growth and maintenance requirements for 1st and 2nd lactation animals 头胎和二胎牛的生长和维持需求
- By production 按产量
 - Milk yield (MY) or days in milk (DIM)
 - 产奶量或泌乳天数
- For young stock, dry, and lactating animals
- 后备牛、干奶牛和泌乳牛
 - Close-up and far-off dry cows 产前和干奶前期牛
 - Bred and unbred heifers 带胎小母牛和不带胎青年母牛

Grouping 分群

- Feeding in 3 groups vs. 2 groups
- 三群饲喂vs. 两群饲喂
 - Higher income over feed costs (Williams, 2002)
 - 收入比饲料成本要高
- Feeding 3 groups vs. 1 group TMR
- 三群饲喂vs.一群TMR日粮
 - Reduced N excretion by 15% (Castillo, 2000)
 - 氮排泄量减少15%

Why not group feed? 为什么不分组饲料

- Need ability to make groups within housing
- 需要在牛舍内分组
- More rations to formulate 更多的配方日粮
- Feed composition changes by load and

throughout storage

• 装载和贮存中的饲料成分变化

Precision feeding 精确饲喂

- Diet formulation 日粮配方
 - Builds on grouping strategies 基于分群策略
 - Reducing nitrogen excretion 减少氮的排泄
 - Reducing phosphorus excretion減少磷的排泄

Reducing nitrogen excretion 降低氮的排泄

- Maximize microbial protein synthesis
- 最大化微生物蛋白合成
 - Requires soluble N and fermentable carbohydrates 需要可溶性氮和可发酵碳水化合物
- Formulate on RUP/RDP
- 瘤胃非降解蛋白/瘤胃降解蛋白的形成
- Supplement with methionine (Met) and lysine (Lys) for further reductions in excreted nitrogen
- 补充蛋氨酸和赖氨酸以进一步降低氮的排泄

Reducing nitrogen excretion

减少氮的排泄

- Reducing diet CP from 17.8% to 17.0% reduced fecal N by 5% and urinary N by 17.3% (Harrison et al., 2002)
- 日粮中粗蛋白从17.8%降至17%时,粪氮下降5%,尿氮下降17.3%。 (哈里森等,2002年)
- Wattiaux and Kang (2004) observed a 16% drop in urinary N when diet CP was reduced from 18% CP to 16.5% CP
- Wattiaux 和 Kang (2004) 研究表明当日粮中粗蛋白从18%降至16.5% 时, 尿氮下降16%
- No impact on MY in either study
- 两个研究表明对牛奶产量都没有影响
- IOFC increased in the Harrison study
- 在哈里森的研究中收入大于成本

Reducing phosphorus excretion

降低磷的排泄

- Phosphorus (P) believed to improve reproductive performance
- 磷被认为可提高繁殖性能
- One of most expensive nutrients in the diet
- 是日粮中最贵的营养成分之一
- Cows overfed P used P less efficiently because excess P is not converted to milk or stored in bones or tissue
- 奶牛吃过多的磷或磷的使用效率较低,那是因为过量的磷没有转换为牛奶或储存在骨骼或组织
- Grouping strategies, alone, can reduce P excretion by 9%
- 分群策略可以使磷的排泄降低9%

What happens when you overfeed P to cows?当你给奶牛饲喂过多磷时会发生什么?

	日粮中	粦含量	量 Dietary P content			
		.40	.45	.50	.55	
Acres required for land application ¹						
100 cows		91	108	126	143	
Maximum cow numbers ²						
100 acres, 50% corn, 50% alfalfa		93	78	68	60	
100 acres, 50% corn, 25% alfalfa, 25% grass hay		86	73	63	56	

¹Assumes cropping program of 50% corn, 50% alfalfa. DMI predicted from NRC, 2001, and crop nutrient values as in Van Horn (1992).

Acreage needed for crop removal of P increases almost 60% when diet P content increases from 0.40% to 0.55%.

当日粮中磷的含量从0.40%上升至0.55%时,每英亩作物需移走的磷增长近60%

²Milk yield of 60 lb/d.

P needs in the dairy cow diet 奶牛日粮中磷的需求

- NRC does not recommend P as a percent of the diet dry matter
- NRC没有关于磷占日粮干物质比例的建议值
- But, roughly speaking, 0.4 adequate
- 但是,大体来说,在日粮干物质占比0.40-0.41%是足够的

Precision feeding 精确饲喂

- 3 diets 3种日粮
 - What is formulated by the nutritionist
 - 营养师配制的日粮?
 - What is mixed on the farm 牧场自身混合的日粮?
 - What is consumed by the animal 奶牛采食的日粮?

What is formulated by the nutritionist 营养师配制的日粮

- Of the 3 diets, this is likely most reflective of nutrient needs
- 在这三种日粮中,营养师配制的日粮最能反应营养需求
- Safety margins added in for some nutrients?
- 某些增加的营养成分是否在安全边际量范围?
- Does the ingredient list match what is available onfarm?
- 配方上的原料表是否与牧场现有的原料匹配?

What is mixed on the farm 牧场混合的日粮

- Do on-farm ingredient compositions match values used in formulation?
- 确保牧场的原料组成与配方上使用的值一致
- Feed composition varies by load and throughout storage 在装载和贮存过程中,饲料成分变化
- Errors associated with mixing 日粮混合过程中的错误
 - Scale errors 称重的错误

What is consumed by the animal 什么是奶牛采食的日粮?

- Sorting of ingredients 挑食原料
 - Overcome through proper particle size and mixing
 - 通过合适的颗粒和混合来解决
- Feed refusal 剩料
 - Feed often 饲喂过多
 - Keep feed within reach 保持饲料触手可及
 - Track feed refusal to minimize overfeeding
 - 监测剩料,以将过量降至最低

Impact of 3 diets on nutrient management 三种日粮对养分管理的影响

- The combination of above factors can lead to as much as 30% extra nitrogen and phosphorus in the manure
- 上述所有的因素可导致粪污中多出30%的氮和磷
 - Could also be a shortage of nutrients
 - 也可能是营养不足的
 - May not see the effect until manure sampling
 - 在粪污采样前不会看到效果

Precision feeding 精确饲喂

- Ingredient sampling
- 原料采样
 - Necessary for formulation 需要配方
- TMR sampling TMR 取样

efficiency assessment 效率评估

Forage nutrient content changes over time 随着时间的推移,粗饲料养分含量的变化

- Forage P content varies 粗饲料中磷含量的变化
 - 20-25% over 1 year (NE DHIA laboratory); field effect
 - **1**年后, 20-25%; 田间效应
 - More variable in grasses than in legumes
 - 草比豆科植物变化更大
 - Thus, need to sample at least by field or load
 - 因此,至少需要在田间或装载时采样
- Mechanical losses during forage harvest (leaf shatter) influence energy and nitrogen content
- 收获牧草期间,机械损失(叶片粉碎)影响能量和氮的含量
- Excess moisture at baling leads to heating and decreased nutrient digestibility 打捆时,过多的水分导致过热并且降低养分的

Other changes to forage content 粗饲料的其他变化

- Weather 天气
 - Rain on growing forages can lead to leaching of nutrients; more important in early stages of growth
 - 牧草生长时的降雨可导致养分流失; 生长的早期阶段更重要
 - Poor drying conditions leads to lower quality forages due to length of drying time 由于干燥时间,干燥条件差可导致粗饲料质量低。
- Composition changes during ensiling
- 青贮过程中的成分变化
 - Particularly if ensiled wet or poorly 特别是如果青贮时太湿或质量较差

Sampling concentrates 精料取样

• Assume each load coming onto the farm is from a single source 假设到牧场的每车精料都

来自于一个单一的来源

- Sample each load
- 每个都取样

Feed waste 饲料的浪费

- Fresh feed 新鲜的饲料
- Accessible 容易获取
- Recycle to replacements
- 饲喂给后备牛

Keep feed fresh 保持饲料的新鲜

- Ingredients and mixed rations 原料和混合日粮
- Feeding frequency is important 饲喂频率是重要的
- Mold growth inhibits dry matter intake, increasing refusals 霉菌的生长抑制干物质采食量,会增加剩料

Face management 青贮窖横截面管理

• Good silage management is key to minimizing nutrients managed as waste 良好

的青贮管理是将养分浪费降至最低的关键

Keep feed accessible 保证饲料容易获得

- If they can't reach it, they can't eat it 如果 她们够不着,他们就不会吃
 - Feed more frequently 更频繁的饲喂
 - Push up feed between feedings
 - 在饲喂之间推料

Recycling feed to replacements 剩料饲喂后备牛

- Reduces feed waste and excess nutrients to manage 减少饲料浪费及营养过量管理
 - If you know what it contains and that it fits in the formulation for replacement heifers 如果你知道它包括什么,以及它适合后备牛的日粮配方
 - If it is actually consumed and refusal isn't just delayed another day 如果它是实际消耗并按并且剩料不只是延迟了一天
- Still best to avoid excess from the milking herd
- 仍然是最好的方式避免泌乳牛群营养过量的方式

Feeding DDGs 饲喂DDGs

- DDGs included at DDGs包括
 - >20% for lactating animals
 - 泌乳牛目粮中 大于20%
 - 15% for replacement heifers 后备牛日粮中15%
- Good source of RUP and energy是过瘤胃蛋白和能量的良好来源
- Watch the diet P content 监控日粮中磷的含量
 - Less likely to contribute to excess P when fed to lactating animals compared to other dairy or other species 与其他的品种相比,饲喂 泌乳牛DDGS时,不太可能出现过量的磷。
 - P exported in milk 磷转化为牛奶

Conclusions 结论

- Feeding to minimize nutrient excretion makes economic sense
- 最小化养分的排泄,具有经济意义
 - N and P are expensive in the diet 氮和磷在日粮中是昂贵的
 - Spoiled or refused feed adds feed cost
 - 变质的饲料或剩料增加了饲料成本
 - Wasted nutrients and feed mass add to what has to be managed as part of a nutrient management plan
 - 浪费的营养和饲料必须成为养分管理计划的一部分
- Feed management plan encompasses housing strategy, ration formulation, herd management, feed handling 饲料管理计划包括牛舍策略、日粮配方、牛群管理和饲料处理